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X-Ray Diffraction by Randomly Oriented Line Gratings 
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This paper contains a calculation of the X-ray diffraction pattern to be expected from a randomly 
oriented assemblage of line gratings. A line grating is defined as a periodic linear structure, most 
generally represented by a chain of similarly oriented and uniformly separated unit cells arranged 
along a straight line. The calculations assume that the line gratings are also randomly positioned in 
space, and that  the number ~V of unit cells in each of the line gratings is the same. The corresponding 
result for a distribution of lengths among the line gratings, however, may be obtained by suitably 
averaging the result given. 

The calculated pattern is compared with the corresponding patterns for ordinary three-dimen- 
sional crystals and for two-dimensional arrays, and it is shown that  the pattern for the two- 
dimensional arrays represents a combination of the properties of the patterns for line gratings and 
three-dimensional crystals. A typical intensity distribution is shown, and it is found that, even for 
large values of N, the pattern shows a smooth distribution of diffracted intensity, except for sudden 
changes in the intensity at the angles which would correspond to the position of the h00 lines in a 
simple cubic lattice with the same separation between adjacent unit cells. 

, I n t r o d u c t i o n  

The X-ray  diffraction pat terns  obtained in as yet  un- 
publ ished work by  Dr Cutler D. West  on certain organic 
polymers containing iodine and  "other •halogens have 
led him to suspect tha t  the halogen m a y  be contained 
in these compounds in the form of straight chains of 
halogen atoms, tha t  the directions of these chains are 
random, and tha t  the separation of adjacent  chains is 
random. Accordingly, it  seemed desirable to s tudy in 
detail  the theoretical diffraction pat terns to be expected 
from a random assemblage of line gratings. The present 
paper  is* devoted to this theoretical study. 

A line grating is defined here as a periodic l inear 
structure, most s imply exemplified by  a straight  chain 
of uniformly spaced atoms, and most generally repre- 
sented by  a chain of s imilarly oriented unit  cells 
arranged along a line with a constant t ranslat ion vector 
a representing the separation of adjacent  uni t  cells. 
The line grating is termed a one-dimensional point 
grating by  Compton & Allison (1935, p. 332). 

Consider a line grating defined by  the t ranslat ion 
vector a, whose axis makes the angle X with the direc- 
t ion of propagation s o of the original X-ray  beam, as 
shown in Fig. 1. I t  has been shown by  Compton & 
Allison tha t  the  diffracted intensi ty  will have pro- 
nounced m a x i m a  in the directions of the generators of a 
certain set of cones, all of which have ihe  direction a as 
a symmet ry  axis. F rom the figure it is evident  tha t  the 
half-angles of the cones are those angles which satisfy 
the condition tha t  the difference of the distances A B  
and CD should be a whole number ,  h, of wave-lengths. 

Thus, the various cones m a y  be indexed by  the 
order h, where the integer h assumes both positive and 

negative values as well as zero. Each of the cones gives 
rise to a r ing-shaped pa t te rn  on the surface of a sphere 
with the  line grating at the center. 

The problem treated in this  paper  is the determinat ion 
of how the ring-shaped pat terns  are spread out when 
they  are produced by  an assemblage of line gratings 
with random orientations. The results of the s tudy  are 
given immedia te ly  below in Par t  I and the derivat ion 
of the results is given in Par t  II.  

J 

So S 

Line gracing 

Fig. 1. Some of the vectors and co-ordinates used in the treat- 
ment. The direction indicated by the unit vector s o is that 
of the undeviated X-ray beam. The line marked'line grating' 
is the line along which the unit cells are located. The heavy 
dots along the line represent the positions of the unit cells, 
or, in the simple case in which the unit cell contains only one 
atom, the positions of the atoms. 

P a r t  I .  S t a t e m e n t  o f  r e s u l t s  

The intensi ty  of the diffracted radiat ion at the Bragg 
angle 0 for a random assemblage of line gratings m a y  
be writ ten 

Ioe4NM 1 + cos~ 20 (Fg)A v 
I(0) = mgc4R ~ . 2 J(O). (1.1) 

In  this  expression N is the number  of uni t  cells in  a 
single line grating and  M is the total  number  of line 
gratings in the sample.; thus N M  is the total  number  of 
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unit cells in the sample. The quant i ty  <F~)xv. is the 
square of the structure factor of the unit cell with respect 
to orientation on the basis tha t  all orientations are 
equally probable; this average is £ function only of 0. 
In  the important special case in which the unit cell 
contains only one atom, the function <F~>Av. is equal 
to the square of the atomic scattering function fo(O). 

I t  is shown in Par t  I I  that  the exact expression for 
the function J(0) is 

1 ?.z sin ~. N x  _ 
J(6)=N-~z Jo s-:-~x dx, (1.2) 

where z is the abbreviation 

2a sin 0 
z=  7 . (1-3) 

The length a is the separation between adjacent unit 
cells and h is the wave-length of the X-rays. 

The expression (1.2) for J(0) may be written in 
closed form in terms of trigonometric functions 

N-  1 2 ( N - j )  sin 2njz 
J(O)= 1 + • (1.4) 

j= l N 2njz 

The expression J(O) in this form involves a sum of 
N terms. The expression is thus suitable when N is 
small but becomes awkward to use when N becomes 
larger than say 4 or 5. 

An approximate expression for J(0) whose accuracy 
increases as N becomes larger is given by 

- -  - + _ P[n~N(z-h)]  , (1.5) 
- - Z  h = 0  

where the function P[x] is the probability integral 
defined by 

P[x] = ~ e -~2 dz. (1.6) 
--O0 

A brief table of this function is given in Table 1. 

Table 1. Tabulation of the function P[x] 

x P[x] 
- -  2-0 0 .002  
--  1.9 0 .004  
--  1.8 0 .005  
- -  1.7 " 0 . 0 0 8  

- -  1-6 0-012 
- - 1 . 5  0 .017  
--  1.4 0 .024  
- -  1.3 0 .033  
--  1.2 0 .045  
--  1-1 0 .060  
--  1.0 0 .079 
- - 0 . 9  0 .102  
- - 0 . 8  0 .129  
- - 0 . 7  0 .161 
- - 0 . 6  0 .198  
--  0.5 0-240 
--  0 .4 0"286 
--  0.3 0"336 
- - 0 . 2  0"389 
--  O. 1 0"444 

0 .0  0"500 

x P[x] 
0.0 0 .500  
0-1 0 .556  
0.2 0.611 
0.3 0 .664  
0.4 0 .714  
0.5 0 .760  
0-6 0 .802 
0.7 0 .839 
0.8 0.871 
0.9 0 .898 
1.0 0.921 
1-1 0 .940  
1.2 0 .955  
1.3 0 .967 
1.4 0 .976  
1-5 O . 9 8 3  
1.6 0 .988  
1.7 0 .992  
1.8 0 .995  
1.9 0 .996  
2 .0  0 .998  

The expression for J(O) in (1.5) involves a sum over 
the various orders of the diffraction pat tern rather than 

the sum involved in (1.4). Accordingly, the labor of 
evaluating J(0) from (1.5) is independent of the 
number N. 

The approximate expression (1.5) may be written 
in the form + ~o 

J (0 )=  ~] Jh(0), (1.7) 
h-----~oo 

where Jn(O)=-½P[ntN(z-]hl)]/z  (h#O), (1.8) 

and" Jo(0) = { P[n~Nz] - ½}/z. ( 1.9) 

In  this form each of the Jh(0)'s represents the con- 
tribution to the total  intensity of the ring-shaped 
pat tern of order h which was described in the Introduc- 
tion. Because J -h  is equal to Jn, (1.7) may also be 
written in the form 

J(O)=Jo(O)+2 ~ Jh(O). (1.10) 
h = l  

This form indicates clearly the fact that  the non-zero 
orders have a weight of two relative to a weight of 
uni ty  for the zero order. 

In  order to compare the pat tern of randomly oriented 
line gratings with the corresponding patterns of ran- 
domly oriented three-dimensional crystals and of 
randomly oriented two-dimensional arrays, the inten- 
sity distributions corresponding to a single order for 
each ~ of these three cases, three-dimensional crystal, 
two-dimensional array and line grating, are shown in 
Figsl 2 (a-c). (The distribution for the random assem- 
blage of two-dimensional arrays has been plotted from 
the theory developed by Warren (1941 ).) 

In these figures the intensity distributions are those 
due only to the factor J(O) and do not include the effect 
on the intensity distribution of the polarization factor, 

1(1 + cos 9" 28), or the structure factor, <F2>Av.. In each 
case the patterns shown are first-order patterns which 
correspond to the minimum inter-cell distance a; ff the 
x axis is parallel with the translation vector corre- 
sponding to the minimum inter-cell distance, then the 
distribution shown in Fig. 2 (a) is the 100 line, the 
distribution shown in Fig. 2 (b) is the 10 pattern, and 
the distribution shown in Fig. 2 (c) is the first-order 
pattern. 

In  each of the three cases the number N is the number 
of inter-cell distances in a typical linear dimension of 
the crystal. Thus, in the case of an assemblage of three- 
dimensional crystals, N is the cube root of the total 
number of unit cells in each of the crystals and, in the 
case of an assemblage of two-dimensional arrays, the 
number N is the square root of the number of unit cells 
in each of the two-dimensional arrays. 

In Fig. 2 (a) the peak intensi ty is proportional to the 
number N and the width of the line to N -1. In  Fig. 2 (b) 
the height of the peak is proportional to N½ and the 
width of the distribution to N -1. Finally, in Fig. 2 (c) 
the height of the peak varies only slightly as the number 
N is increased. Accordingly, the slope of the rising 
portion of the intensity curve is proportional to N 2, _Nt 
and N for the three cases. 
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Fig. 2. (a) Three-dimensional crystals. The curves show the 
relat ive in tens i ty  d is t r ibut ion across a line representing a 
first-order interference in the  powder  p a t t e r n  of  a three- 
dimensional  crystal .  The abscissa is a dimensionless para-  
mete r  which  involves the  corresponding displacement  dis- 
t ance  a in the  crystal .  N is the  n u m b e r  of  inter-cell distances .. 
in a typica l  linear dimension of  the  crystals.  I f  the  to ta l  size 
of the  scat ter ing sample  is held constant ,  then  the  height  of  
the  peak  is propor t ional  t o / 7  and the  wid th  a t  ha l f -max imum 
t o / 7  -1 , so t ha t  the  m a x i m u m  slope of  the  rising por t ion  of 
the  curves is propor t ional  t o /7% 

(b) Two-dimensional  arrays .  The curves show the  relat ive 
in tens i ty  dis t r ibut ion across a line representing a first-order 
interference in the  pa t t e rn  of  r andomly  oriented two-d imen-  
sional ar rays .  The abscissa is a dimensionless pa ramete r  
which involves the  corresponding displacement  dis tance a in 
the  crystal .  N is the  n u m b e r  of  inter-cell distances in a typica l  
linear dimension of  the  lattices. I f  the  to ta l  size of  the  scat- 
te r ing  sample  is held constant ,  then  the  height  of  the  peak  is 
propor t ional  to/7½ and  the  wid th  a t  ha l f -maximum to N -~, so 
t ha t  the  m a x i m u m  slope of  the  rising por t ion  of  the  curves 
is propor t ional  to Nt .  

(c) Line gratings. The curves show the  relat ive in tens i ty  
d is t r ibut ion of  the  pa t t e rn  representing the  first-order inter- 
ference in the  p a t t e r n  of  r andomly  oriented line gratings. 
The abscissa is a dimensionless pa rame te r  which involves 
the  dis tance a be tween  ad jacen t  uni t  cells of  the  line grat ing.  
/7 is the  ntmaber of  uni t  cells in the  line gratings.  I f  the  to ta l  
size of  the  scat ter ing sample  is held cons tant ,  then  the  height  
o f  the  peak  is insensit ive to the  va lue  of  N ;  the  m~x imum 
slope of  the  rising por t ion  of  tho curves  is propor t iona l  t o / 7 .  

The long tails in the pat terns  for angles larger t h a n  
tha t  corresponding to z=  1 are characteristic of both 
randomly  oriented two-dimensional arrays and ran- 
domly  oriented line gratings. In  the case of the  two- 
dimensional  arrays, the in tensi ty  in the tai l  varies as z -2 ,  
whereas with the line gratings the in tens i ty  in the taft 
varies as z -1. I t  is evident  tha t  the two-dimensional 
arrays form a case intermediate  between the line gratings 
and the three-dimensional  crystals; the line gratings 
have no pronounced peak, and the three-dimensional  
crystals have no tail, whereas the two-dimensional arrays 
combine both these features in a modified manner .  

t • 
3.011 "~"---Th ree-dimensional crystals 

0.0 

i o  FTwo-d imenslonal  arrays 

1 '0 2.0 3"0 4-0 

z = 2 a  sin 0 / ~  

Fig. 3. The three curves in the lowest part of the figure show 
the function J(0), which represents the relative intensity 
distribution, for randomly oriented line gratings with 2, 8 
and  an influite n u m b e r  of  un i t  cells in each line grating. The 
dis tance a involved in the  definition of  z is the  inter-cell  
distance. No te  t ha t  the  m a x i m u m  slope of  the  rising par t s  
of  the  curves is propor t ional  to/V. The middle  and  upper  pa r t s  
of  the  figm'e show the  posi t ions and  rela t ive intensit ies o f  
the  peaks  for r andomly  or iented square  lattices, and  for  
r andomly  or iented simple cubic  crystals .  

Fig. 3 shows the combined pa t te rn  due to all of the 
orders of a randomly  oriented assemblage of line 
gratings for three different values of N, namely,  N = 2 ,  
8 and oo. The points used in plott ing these curves are 
tabula ted  in Table 2. 

I t  is evident  tha t  the overlapping of the various orders 
is such tha t  it is not in general possible to consider the 
distr ibut ion as due to a single order at a given angle. 
When N is large, for example,  the zero-order pa t te rn  
contributes one-third of the total  in tensi ty  between 
z = 1 and z = 2; the zero-order pa t te rn  contributes one- 
fifth of the intensi ty,  and the second and th i rd  orders 
each contribute two-fifths of the total  in tensi ty  between 
z -- 2 and  z-- 3, and so on. 

In  order to show another aspect of the relation 
between the in tens i ty  distr ibutions for the three dif- 
ferent cases, there have been added to Fig. 3 the positions 
and relative intensities for the peaks for three-dimen- 
sional crystals and two-dimensional arrays. The posi- 
tions are calculated for a simple cubic lattice and for 
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3 " 1 5 0  
3 . 2  

3"3 
3"4  
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3"6  
3"7 

3"8 
3 . 8 5 0  

3 " 8 7 5  

3"9 
3 " 9 2 5  

3 . 9 5 0  

3 " 9 7 5  
4 . 0  

5 . 0 0 0 0  

2 . 5 0 0 0  

1 . 6 6 6 7  

1 . 2 5 0 0  

1 . 0 0 0 0  
0 . 8 3 3 3  
0 . 7 1 4 3  

0 . 6 2 5 0  

0 . 5 5 5 6  

0 . 5 0 0 0 ,  1 . 5 0 0 0  

1 . 3 6 3 6  

1 . 2 5 0 0  

1 . 1 5 3 8  
1 - 0 7 1 4  

1 . 0 0 0 0  
0 . 9 3 7 5  
0 . 8 8 2 4  

0 . 8 3 3 3  

0 - 7 8 9 5  

0 . 7 5 0 0 ,  1 . 2 5 0 0  

1 . 1 9 0 5  

1 . 1 3 6 4  

1 . 0 8 7 0  
1 . 0 4 1 7  
1 . 0 0 0 0  

0 . 9 6 1 6  

0 . 9 2 5 9  

0 . 8 9 2 9  

0 . 8 6 2 1  

0 . 8 3 3 3 ,  1 . 1 6 6 7  

1 . 1 2 9 0  

1 . 0 9 3 8  
1 . 0 6 0 6  
1 . 0 2 9 4  

1 . 0 0 0 0  
0 . 9 7 2 2  

0 . 9 4 5 9  
• 0 . 9 2 1 1  

0 . 8 9 7 4  

0 . 8 7 5 0 ,  1 . 1 2 5 0  

Table 2. The function J(O) for N = 2, 8 and oo 
J ( 0 )  b y  a p p r o x i m a t e  e q .  ( 1 . 5 )  J ( 0 )  b y  e x a c t  E x a c t  J(O) m i n u s  

e q .  (1.4) a p p r o x i m a t e  J(O) % 

N = 8 17 = N = 2  N = 2  

8 . 0 0 0 0  2 . 0 0 0 0  2 . 0 0 0 0  0 . 0 0 0 0  
7 . 6 7 7 2  - -  - -  - -  

6 . 8 3 9 6  - -  - -  - -  
5 . 7 8 2 7  - -  - -  - -  

4 . 7 7 5 3  1 . 9 1 9 3  1 . 9 3 5 5  0 . 0 1 6 2  
3 . 9 5 1 3  - -  - -  - -  
3 . 3 2 4 6  - -  - -  - -  

2 . 4 9 9 8  1 . 7 1 0 0  1 . 7 5 6 8  0 . 0 4 6 8  

1 . 6 6 6 7  1 . 4 4 6 4  1 . 5 0 4 5  0 . 0 5 8 1  

1 . 2 5 0 0  1 . 1 9 7 1  1 . 2 3 3 9  0 . 0 3 6 8  

1 . 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  0 . 0 0 0 0  
0 . 8 3 3 3  0 . 8 6 8 6  0 . 8 4 4 1  - 0 . 0 2 4 5  
0 . 7 1 4 3  0 . 8 0 8 7  0 . 7 8 3 8  - -  0 . 0 2 4 9  

0 . 6 2 5 0  0 . 8 2 2 5  0 . 8 1 0 8  - 0 . 0 1 1 7  
0 . 5 8 9 8  - -  - -  - -  

0 . 5 7 8 4  - -  - -  - -  

0 . 5 8 0 5  0 . 8 9 7 9  0 . 8 9 6 1  - - 0 . 0 0 1 8  
0 . 6 1 2 2  - -  - -  - -  
0 . 6 9 2 7  ~ - -  - -  

0 . 8 2 8 8  - -  - -  - - -  

1 . 0 0 0 0 .  1 . 0 0 0 0  1 . 0 0 0 0  0 . 0 0 0 0  
1 . 1 6 2 9  - -  - -  - -  

1 . 2 7 8 1  - -  - -  - -  
1 . 3 3 3 7  . . . .  

1 . 3 4 3 2  1 . 0 8 3 6  1 . 0 8 5 0  0 . 0 0 1 4  
1 . 3 2 7 9  - -  - -  _ _  

1 . 3 0 3 2  
1 . 2 5 0 0  

1 . 1 5 3 8  
1 . 0 7 1 4  

1 . 0 0 0 0  
0 . 9 3 7 5  
0 . 8 8 2 4  

0 . 8 3 3 3  

0 . 8 1 1 5  
0 . 8 0 3 2  - -  - -  - -  

0 . 8 0 1 3  0 - 9 5 1 6  0 . 9 5 0 8  - - 0 . 0 0 0 8  
0 . 8 1 3 7  ~ - -  - -  

0 " 8 5 0 3  - -  - -  - -  
0 . 9 1 5 8  - -  - -  - -  

1 . 0 0 0 0  1 " 0 0 0 0  1 . 0 0 0 0  0 . 0 0 0 0  
1 . 0 8 2 4  - -  - -  _ _  

1 . 1 4 2 4  - -  - -  _ _  
1 . 1 7 2 9  - -  - -  _ _  

1 . 1 7 9 8  1 . 0 4 3 8  1 . 0 4 4 5  0 . 0 0 0 7  
1 . 1 7 3 6  - -  - -  - -  
1 . 1 6 2 2  - -  - -  _ _  

1 . 1 3 6 4  1 . 0 6 4 6  1 . 0 6 8 8  0 . 0 0 4 2  
1 . 0 8 7 0  1 . 0 5 8 2  1 . 0 6 5 8  0 - 0 0 7 6  
1 . 0 4 1 7  1 . 0 3 2 9  1 . 0 3 9 0  0 . 0 0 6 1  

1 . 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  0 . 0 0 0 0  

0 . 9 6 1 5  0 . 9 6 9 7  1 . 9 6 4 0  - -  0 . 0 0 5 7  

0 . 9 2 5 9  0 . 9 5 0 4  0 . 9 4 3 9  - -  0 . 0 0 6 5  
0 . 8 9 2 9  0 . 9 4 9 3  0 . 9 4 6 0  - -  0 . 0 0 3 3  
0 . 8 7 7 7  - -  - -  
0 . 8 7 1 7  - -  - -  

0 . 8 6 9 8  0 . 9 6 8 3  0 . 9 6 7 7  - -  0 . 0 0 0 6  
0 . 8 7 7 4  - -  - -  

0 . 9 0 1 0  - -  - -  
0 . 9 4 3 9  - -  - -  _ _  

1 - 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  0 . 0 0 0 0  
1 . 0 5 5 2  - -  - -  _ _  

1 . 0 9 5 7  - -  - -  _ _  

1 . 1 1 6 7  - -  ~ 

1 . 1 2 1 8  1 . 0 2 9 7  1 . 0 3 0 2  0 . 0 0 0 5  
1 . 1 1 8 1  - -  - -  _ _  
1 . 1 1 0 7  - -  - -  _ _  

1 . 0 9 3 7  1 . 0 4 4 4  1 . 0 4 7 3  0 . 0 0 2 9  

1 . 0 6 0 6  1 - 0 4 0 6  1 . 0 4 5 9  0 . 0 0 5 3  
1 . 0 2 9 4  1 . 0 2 3 2  1 . 0 2 7 5  0 . 0 0 4 3  
1 - 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  0 . 0 0 0 0  
0 . 9 7 2 2  0 . 9 7 8 1  0 . 9 7 4 0  - -  0 . 0 0 4 1  

0 . 9 4 5 9  0 . 9 6 3 8  0 . 9 5 9 1  - -  0 . 0 0 4 7  
0 . 9 2 1 1  0 . 9 6 2 6  0 - 9 6 0 2  - - 0 . 0 0 2 4  
0 . 9 0 9 4  - -  - -  - -  

0 . 9 0 4 8  - -  - -  _ _  

0 . 9 0 3 2  0 . 9 7 6 4  0 . 9 7 6 0  - -  0 . 0 0 0 4  
0 . 9 0 8 6  - -  - -  - -  
0 . 9 2 6 1  - -  - -  _ _  

0 . 9 5 8 0  - -  - -  - -  

1 . 0 0 0 0  1 . 0 0 0 0  1 . 0 0 0 0  0 . 0 0 0 0  

m 

1 . 1 1 8 3  1 - 1 2 6 1  0 . 0 0 7 8  
1 . 1 0 3 0  1 . 1 1 6 4  0 . 0 1 3 4  

1 . 0 5 6 3  1 " 0 6 6 8  0 . 0 1 0 5  
1 . 0 0 0 0  1 . 0 0 0 0  0 . 0 0 0 0  
0 . 9 5 0 7  0 . 9 4 1 5  - -  0 . 0 0 9 2  
0 . 9 2 1 2  0 . 9 1 1 0  - -  0 . 0 1 0 2  

0 . 9 2 1 1  0 . 9 1 5 9  - - 0 - 0 0 5 2  
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a simple square array, respectively, in both of which 
the unit cell contains only one atom. Just  as in the case 
of the pattern for the line gratings, the relative inten- 
sities do not include the effect of the polarization factor 
or the structure factor. 

I t  is evident that  in the case of both three-dimensional 
Crystals and two-dimensional arrays the lines become 
more closely spaced as z increases, whereas in the case 
of the line gratings the various orders are uniformly 
spaced. I t  may be shown that the asymptotic density 
of the lines for the first two cases is proportional to 
z 9 and z, respectively. 

When N is large the expression (1-5) for J(O) is much 
more convenient to use than (1.4). Accordingly, it is 
desirable to obtain some estimate of the error involved 
in the use of (1.5). In order to study this question, J(0) 
was calculated from both of the expressions for h r-- 2. 
Evidently this is the most severe test of (1.5), since its 
accuracy increases as ~V increases. The two functions 
are tabulated in Table 2; and the difference between 
the two functions is also tabulated. I t  is evident that  
the difference between them is very small; the maximum 
difference is about 0.06, and thLu difference is equal to 
about 4 % of the value itself. 

In the case of the three-dimensional crystals and the 
two-dimensional arrays the width of the peaks at half- 
maximum intensity affords a convenient means of 

• measuring the number N, which in turn determines the 
size of the crystals. Because randomly oriented line 
gratings do not provide a peak whose width is a sensitive 
function of the number N, it is necessary to use some 
• other method for the case of line gratings. 

The method proposed involves measuring the slope 
of the rising portions of the pattern. A plot of zJ(O) has 
the form shown in Fig. 4, in which the risers of the 
stairway have a slope which is proportional to h r. Now 
let A0 be the range of Bragg angles within which the 
function zJ(O) rises from 25 to 75 % of the distance 
between the horizontal treads of the stairway. This 
range of Bragg angles corresponds to the range of the 
argument of the error function in which its value rises 
from 0.25 to 0.75; by inspection of Table 1 this range is 
0.954. I t  follows from (1.8) that  the corresponding 

• range in the parameter z is equal to 0.538/hr. I t  then 
further follows from (1.3) that  the corresponding 
breadth B_-- 2A0 is related to L -  hra by 

L=O.538h/BcosO (line gratings). (1.10) 

The determination of L from the observed intensity 
pattern may accordingly be accomplished as follows. 
The observed pattern should first be corrected for the 
effects of the polarization factor and the structure 
factor, and, secondly, it should be multiplied by sin 0. 
A plot of the resulting pattern versus O will then have 
the general form shown in Fig. 4, from which the value 
of AOmay easily be determined. 

The expression (1.10) for randomly oriented line 
gratings may be compared with the corresponding 

relations for three-dimensional crystals and two- 
dimensional arrays: 

L = 0.92h/B cos 0 (three-dimensional crystals), (1.11) 

L = 1-84h/B cos 0 (two-dimensional arrays), (1.12) 

where, in the last two relations, B-- 2AO corresponds to 
the width of the distribution, as measured between the 
points where the intensity has dropped to one-half the 
peak intensity. 

'The results stated above hold for a gas of identical 
molecules, each of the molecules being a linear arrange- 
ment of identical unit cells which are identically 
oriented. For the special case in which each of the unit 
cells contains but a single atom, so that  the molecule is 
a linear molecule containing hr identical atoms, the 
results are in accbrd with those of Pirenne (1946, 
Chapter 6). 

zJ(e) 

~0 

Fig. 4. This is the  t y p e  of  figure which should be  d rawn  in 
order  to  determine A0, and the reby  L, f rom dons i tometer  
curves,  as descr ibed in P a r t  I. 

Part II. Der ivat ion  o f  results* 

The exact expression for J(O) in the form (1.4) may 
be obtained very simply from a general result of Debye 
(1915). In the notation used in this paper, Debye has 
shown that the general result for the function J(O) for 
any type of randomly oriented crystal is given by 

1 sin 2~z~z 

where the indices k and / are to run separately over the 
unit cells in the crystal, where h T is the totM number of 
unit cells in the crystals, and where zk~ is defined by 

zkz = (2rk~/~) sin 0. (2-2) 

The quantity rk~ is the distance between the unit cells 
designated by/c and/. The expression (1.4) for randomly 
oriented line gratings may now be obtained directly 
from (2.1) by noting that  there are just N terms in 
(2.1) for which rk~ is zero, that  there are just 2(hr-1)  
terms for which rk~ equals a, just 2(hr-2)  for which 
rk~ equals 2a, and so on. 

* The original manuscr ip t  of  this paper  conta ined a s t raight-  
forward  der ivat ion  of  equa t ion  (1.2) f rom first principles, b u t  
a t  the  suggestion of  the  Ed i to r  this der ivat ion has been omi t t ed  
f rom the  present  paper  for the  sake of  b rev i ty .  A few copies of  
the  original manuscr ip t  are avai lable  and  m a y  be ob ta ined  
b y  writ ing to the  author .  
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The result (1.4)has thus been established. The expres- 
sion for J(0) in the form (1.2) may be obtained from 
(1.4) by a purely mathematical transformation. Be- 
cause the transformation is not obvious, and because 
the writer is not aware of any publication where a proof 
of the transformation may be found, a derivation is 
provided in the Appendix. 

The approximate expression (1-5) for the function 
J(0) may be obtained from (1.2) by use of the approxi- 
mation 

sin e Nx 
- -  - N  2 ~] exp [ -  (N2/n) (x-nh)2], (2.3) 
sin 2 x h 

where h assumes all integral values, positive, negative 
and zero, and by the use of the further approximation 
of replacing the lower limit of each' of the resulting 
integrals (except the one for h = 0) by minus infinity. 

This completes the derivation of the results given in 
Part  I. 

The expression (1.2) for J(0) is not correct for very 
small values of 0. This fact may be seen in the following 
way: 

As z approaches zero, J(0) approaches the value N: 

l imJ(O)=N. (2.4) 
z = 0  

The substitution of this expression in (1.1) then leads 
to the conclusion that  the intensity scattered at very 
small angles is proportional to N2M, whereas it follows 

.from fundamental considerations that  at very small 
angles the scattered intensity must be proportional to 
N~M ~. This discrepancy arises from the assumption 
that  the line gratings are randomly arranged in space. 
When the angle 0 becomes smaller than A/2~q ~, where 
is the transverse linear dimension of the sample, it is 
no longer possible to ignore the correlation between the 
positions of the separate line gratings. At angles small 
compared with ,~/2~f, the Waves scattered from all of 
the line gratings will add up in phase. A detailed con- 
sideration of this fact leads to the introduction of an 
extra factor M; this introduction removes the dis- 
crepancy. 

The writer wishes to thank Dr Cutler D. West, 
Polaroid Corporation, for suggesting the problem 
treated here. He is further indebted to both Prof. 
B. E. Warren and Dr West for helpful discussions, and 
he wishes to thank Mr Samuel Stone for checking all of 

• the mathematical derivations in this paper and for 
supplying the proof given in the Appendix. 

Appendix 

This section contains a proof of the identity o f f  and g, 
where ~z sin 2 Nx 

f-Jo ~ x  dx, 
N - - 1 ] ¥ _  i 

g -  Nz + ~ sin 2iz. 
i=1 i 

The writer's first acquaintance with the integral f 
occurred in 1942 in connection with the signal-to-noise 
ratio of hydrophone arrays. At that  time, the writer 
proposed and used the identity o f f  and g for all values 

o f  N on the basis of proofs only for N = 1 , 2 , 3  and 4; 
the identity was later proved for all values of AT by 
Mr C. E. Shannon, of Bell Telephone Laboratories, by 
a generalized method of mathematical induction. The 
following proof by direct derivation was worked out in 
1947 by Mr Samuel Stone, formerly of the Polaroid 
Corporation. 

The starting point of the derivation is the relation 
tDwight, 1934, p. 79) 

2v- 1 sin _Yx sin [c~ -- (N -- 1 ) x] 
~] sin ( a -2 ix )  = , (1) 

i = 0 sin x 
i 

where a is arbitrary. By use of the substitution 

~ = ( N -  1)x+~-~, (2) 

equation (1) becomes 

sin Nx  N-1 
-- ~] cos [(N --1-- 2i) x], (3) 

sinx i=0 
whence 

sin e Nx N- 1 
- ~] cos [ ( N -  1 - 2i) x] cos [(_N- 1 - 2j) x]. (4) 

sin e x i ,  ~ = 0 

q 

Upon integration one finds 

f= f:sm Nx 
sin2 x dx 

tsin ( _5)  
=2i ,  j = o ( 2 ( i - j )  + 2 ( N - l - i - j )  (5) 

N-1 sin 2(i--j) z 
~- E (6) 

i,i=0 2 ( i - j )  

An enumeration of the number of terms in the last 
summation for which i - j  = ]c yields N - I  k]. The last 
expression therefore becomes 

N-- 1 Sin 2kZ 
f = N z + 2  ~: ( N - k ) - -  (7) 

k=l 2k 

This completes the derivation. 
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